
International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 29-32

www.ijgser.com 29

Conversion of C code to CUDA C code for

faster execution
1
Tejas Gijare,

2
Vishal Bafna,

3
Chaitanya Subhedar,

4
Aniket Ingale

Computer Engineering Department, Zeal College of Engineering and Research Pune, India

Abstract :- There is need for a converter that can

convert one programming language to other to save

time for learning a new programming language

especially like CUDA which deals with CPU as well

as GPU. Making such a system automated is also

important. Also parallelism is the need to save

processing power as well as user's time.

Keywords : - Parallel Computing, Serial Computing,

CUDA, GPU, HPC

I. INTRODUCTION

In the last decades, there has been great advancement

in the region of Parallel Computing. With the

introduction of General Purpose Graphical

Processing Units, parallel processing capability has

become easy and affordable. A typical GPU is a

multicore architecture with each core capable of

thousands of threads running simultaneously [1].

CUDA is a parallel computing system which is

developed by NVIDIA. The GPU remains idle during

running of general purpose applications. To increase

the system performance, the computing capability of

the GPU available can get properly exploit during

execution of application outside the graphics domain.

Parallel computing is an important computing field in

which many computations are carried out

simultaneously.

Some of the areas where GPUs have been used

broadly for General Purpose computing are: scientific

computing [2], Data Analysis [3], image processing

[4], animation and simulation [5] [6] and

cryptography [7].

But the vast repositories of legacy serial C codes,

which are still in used. They are unable to exploit this

addition computing power available to them.

Manually updating all such codes is tiring and error-

prone. Parallelizing even a single C code is not a

minor task. The programmer needs to have a entire

knowledge of source code being parallelized and

should be comfortable with the destination parallel

architecture. Also, even though APIs, such as those

of CUDA, have appeals many non-graphics

programmer to port their applications to GPGPUs,

still the process remains very challenging for

programmers. In particular, CUDA places on the

programmer the burden of packaging GPU codes in

separate methods, of explicitly managing transfer the

data between the host memory and many different

GPU memories, and of manually optimizing the

utilization of the GPU memory [8].

Due to the reasons mentioned above, we have

attempted the task to develop the Automated Tool to

Generate Parallel CUDA code from a Serial C Code.

The tool is aimed to design and enabling simple

portability of existing serial software to parallel

architectures. This should be possible without the

user having any knowledge of the algorithm and the

architecture.

II. EXISTING SYSTEM

In existing systems the two approaches are used that

are the RPA (Rewrite Parallel Algorithm) and MOL

(Modify Original Library). RPA redesigns the

sequential or parallel algorithms and tools on GPUs.

Using these approaches, the users must need to

understand the original (sequential or parallel)

algorithm on CPU absolutely at first, and then write

the CUDA program on GPU directly. The RPA is the

porting approach with the high complexity and low

correctness. For an existing CPU program, when

using the RPA, the programmers also need to

understand the functions and path of execution in the

program, and then write the CUDA program on GPU.

The process of understanding the algorithm/program

will increase greatly the time and complexity of the

porting process.[9]

The second porting approach, MOL, is to modify an

existing CPU program and let it can be operated on

GPU. In the MOL, the first step is to understand the

source codes of original CPU program and the

operational processes. By using profiler tool, the

most time consuming libraries (or functions) can be

found and then they (a partial program) are modified

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 29-32

www.ijgser.com 30

greatly (rewritten the procedure or data structures in

general) to become CUDA programs (kernel

functions).

Ample of work has been done in enhancing the

software support for GPGPU programming. The first

group extends CUDA support to other programming

languages [10], such as PyCUDA for Python, jCUDA

for Java and CUDA Fortran to be jointly developed

by PGI and NVIDIA. The second group of related

work provides high level abstraction of CUDA

programming terms of compiler directives,[11]

propose a compiler framework for translating an

OpenMP program to a CUDA program. The main

contributions of this type of work include an

interpretation of OpenMP semantics under the

CUDA model and the set of transformations that

optimize global memory accesses.

PGI has released a directive-based Accelerator

Programming Model [12] for CPU + Accelerator

systems, and the latest PGI Fortran and C compiler

supports this model on CUDA-enabled NVIDIA

GPUs. Compared to hiCUDA[10], OpenMP is a

standard API which are familier with the

programmers and many existing applications are

programmed in OpenMP. However, both the

OpenMP and the Accelerator model are not specific

to the CUDA architecture, and therefore, less the

support of the important concepts like shared

memory and thread block. Creating an abstraction

that closely matches the CUDA model is exactly the

reason to design a new and simpler set of directives.

III. SYSTEM ARCHITECTURE

The main purpose of this tool is to convert a C code

to its equivalent CUDA code. Same is illustrated in

the flowchart below in Fig 1. The generated output

will be a code in CUDA language which can be

executed on any machine with a CUDA enabled

graphics card.

Fig 1: Flowchart showing the input and output

with the tool as a black-box

Internally, the tool works in two phases (Fig 2). Open

MP is used as the intermediate language between

them:

 • During the first pass, portions of C code are

identified with are not dependent on each other and

can be executed in parallel. Open MPPragmas are

then inserted for those portions.

 • In second pass, aOpen MP compiler produces an

equivalent CUDA code consisting of various CUDA

functions and kernel (GPU) related operations using

Open MP pragmas.

Fig 2: Internal phases

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 29-32

www.ijgser.com 31

Fig 3: Proposed Work

Initially, the serial C code is passed to the Convertor

and then forwarded to following blocks:

 Lexer: The serial C code is tokenized and

these tokens are passed to the Parser.

 Parser: The parser generator used is ANTLR

which is Another Tool for Language

Recognition which is parser generator and

checks the tokens against the patterns and

grammar.

 STG: Symbol Table Generation block stores

all identifiers along with their classification.

 AST: Abstract Syntax Tree generates a Tree

according to the representation of

the structure of source code written in

a computer language. The syntax is

"abstract" in not representing every detail

appearing in the real syntax.

 Kernel Code: The next few blocks is used to

insert the CUDA methods and packages.

 Analysis: The code is further given for

complexity analysis and used for

performance tuning.

IV. MATHEMATICAL MODEL

System S= {input, output, functions, success, failure}

where,

● Input:C program code.

● Output: CUDA C code.

● Functions={f1,f2,f3}

where,

f1=__global__

f2= Cuda Memory functions.

f3= Cuda Copy functions.

● Success: Successfully generates CUDA code

which is feasible to work on GPU.

● Failure: Fails to generate a related CUDA

code.

V. CONCLUSION

So from the above analysis it is concluded that there

is a need for converter which allows conversion of

one source code to another source code. There is

huge amount of overhead to learn kernel code

management in multiprocessor environment so this

converter is useful for converting a source code.

REFERENCES

[1] Tian Yi David Han, Tarek S. Abdelrahman,

hiCUDA: High- Level GPGPU Programming, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 22, No. 1, January 2011.

[2] E. Alerstam, T. Svensson and S. Andersson-

Engels, "Parallel computing with graphics processing

units for high speed Monte Carlo simulation of

photon migration" , J. Biomedical Optics 13, 060504

(2008).

[3] Larsen E. S., Mcallister D., ―Fast matrix

multiplies using graphics hardware‖, Proceedings of

the 2001 ACM/IEEE Conference on

Supercomputing, Nov. 2001, pp. 55.

[4] Vladimir Glavtchev, Pinar Muyan-Ozcelik,

Jeffrey M. Ota, John D. Owens, "Feature-Based

Speed Limit Sign Detection Using a Graphics

Processing Unit", IEEE Intelligent Vehicles, 2011.

[5] Purcell T. J., Buck I., Mark W. R., Hanrahan P.,

―Ray tracing on programmable graphics hardware‖,

ACM Transactions on Graphics 21, 3 (July 2002), pp

703–712.

[6] Knott D., Pai D. K., ―CInDeR: Collision and

interference detection in real-time using graphics

hardware‖, Proceedings of the 2003 Conference on

Graphics Interface, June 2003, pp. 73–80.

[7] Svetlin A. Manavski, "Cuda compatible GPU as

an efficient hardware accelerator for AES

cryptography" Proc. IEEE International Conference

on Signal Processing and Communication, ICSPC

2007, (Dubai, United Arab Emirates), November

2007, pp.65-68.

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 29-32

www.ijgser.com 32

[8] T. D. Han and T. S. Abdelrahman, "hiCUDA:

High-Level GPGPU Programming", IEEE

Transactions on Parallel and Distributed Systems,

Jan. 2011, vol. 22, no. 1, pp. 78-90.

[9]Yu Liu, M. Huang, B. Huang, H.-L. A Huang, and

T.Lee, "GPU-Accelerated Longwave Radiation

Scheme of the Rapid 1508 Radiative Transfer Model

for General Circulation Models (RRTMG)" IEEE J.

Sel. Top. Appl. Earth Observ. Remote Sens., vol. 7,

pp. 3660-3667, Aug, 2014.

[10] Tian Yi David Han, Tarek S. Abdelrahman,

hiCUDA: High- Level GPGPU Programming, IEEE

Transactions on Parallel and Distributed Systems,

Vol. 22, No. 1, January 2011.

[11] S. Lee, S.J. Min, and R. Eigenmann, OpenMP to

GPGPU: A Compiler Framework for Automatic

Translation and Optimization, Proc. Symp. Principles

and Practice of Parallel Programming, 2009.

[12] The Portland Group, PGI Fortran and C

Accelerator Programming Model, Dec 2008.

http://www.ijgser.com/

